thermnial conductivity tensor compbnents; e, charge on an electron; o (n)’ carrier concentration of the n-th
extremum; (Tﬁ), components of the average relaxation time of the n-th extremum; m.@l), tensor components
of the effective carrier mass of the n-th extremum; o (n), isotropic thermal emf due tél carriers of the n-th
extremum; ni(?, lattice component of the thermal conductivity; T, absolute temperature; ('r(iril) F) average

carrier relaxation time for sca’_ctering by acoustic phonons; (r i(?)l), average relaxation time for scattering
by ionized impurities; k, Boltzmann constant; E, energy.
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SOLUTION OF A PROBLEM ABOUT EVAPORATION OF
SPHERICAL METAL PARTICLES IN AN ARC FLAME
BY AN INTEGRAL EQUATIONS METHOD

E. A. Arinshtein and A. A. Kislitsyn UDC 536.42

The problem about the evaporation of metal particles in a plasma is reduced to a single-phase
nonstationary Stefan problem, whose solution is obtained by an integral equations method. Com-
putations are performed for spherical lead particles with an initial radius of R = 7 <1072 em.

Plasma interaction with solid particles is of great interest in plasma physics. The processes occuring
here can be modeled by the following problem.

A globular metal particie with initial radius R, enters a plasma whereupon it starts to evaporate. Our
problem is to find the law of the time change in the particle radius ry{). Experiments onthe evaporation of
lead and tin particles are elucidated in [1].

The problem under consideration is treated in this paper as a Stefan problem and its theoretical solution
by an integral equations method is proposed [2,3]. The temperature at any point of the particle can be found
from the expression

i

t
. d Y 9T (p, G
T, “ZST“” Y Glyri s+ @ j(G“é%—“T) — T, 9 -a?)l dr, : &)
) ¥ So=ry(T)
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Fig. 1. Dynamics of the evaporation
process for a spherical lead particle
in an arc flame: 1) time dependence
of the radius of the evaporating par-

ticle; 2) temperature of the evapora-
tion surface Ty ().

where the Green's function G is

e T exp e ] [0 ] 2
Gl o0 t)~gp]/,;a-(f_7) {eXp[ da(t—) ] exp[ da(f—1) ” @

For brevity, we set T({r, 0) = 0 in writing (1). The motion of the surface is determined by the equation of
evaporation kineties [4,5]
|dry ()
| dt

=0(f) =1, exp’{—— RI;‘u(t) } , 3)

where R is the gas constant; v, =E(3/4n')1/3, C is the mean speed of sound in the metal. The energy conser-
vation law, which can be written as

9T
or

dr
=q(f =1L, 4
r=r(t) q( ) v df ( )

is satisfied on the surface in addition to the kinetics equation, Let us consider the heat flux to be determined
by the expression
g(t) =all, —T; (), (5)

where Tp is the plasma temperature.

Setting r = vy in (1) and eliminating the functions 8T /dr and dry/dt by using (3) and @), we obtain an in-
tegral equation in the temperature Ty {) of the evaporation surface:

Uy €Xp [-— Ly ]dr+

t
Ty ()= — j'Tl G

¥ (r==p=r(t}) RTl (T)
' L L
Y% o
P A RT, (1)
o . ’ oG
— Ty T, (@) | —T (D) — }dt 6
“ (T~ T () J oy ©)
which can be solved by successive approximations by using an electronic computer. FExpanding the expres-
sions for G and 8G/8p, we write (6) as
i 7
T t _ ITL t Py (7)
() =577= ;:l: §
where
t L (™ d )
i ri(t T 8
- T — {ex — —l} ——
= [ e [ gt oe] =G5 | =1l
0
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TABLE 1. Values of the Integrals Ip at Different Times

. Integral 1=0,04 $€C 1=0,1sec #=0,2s€C
Iy —2,4.10-2 -—1,7.10-1 —1,0-10~1
Iy 5,96 5,56-101 2,02.102
I3 2,02.108 2,09.108 - 2,03.108
Iy 5,76 5,46.101 2,01.102
1 —3,3.10t —-3,3.10t —1,0.10t
Iq 2,7.102 3,2-102 1,7.10%
I 1,09 1,23 6,8.10~1
L [ L d
1o, - n T
I, = expi — —_, 9)
2= 3R )° p[ RT, () ]Vt-r .
T H
ao * 2 dv
I, =—2P H — [_— i (%) } ,
TR b= | = si—9)I Vi< o
L 2 L d
Bl () _Lp i
li=—35 s ex"[ at— || T RL® |Vi=’ (11)
0
¢ 2 d
il rnim 1 } i
=3 STl(T)‘exp[_a(t—r) Vit ' (12)
0
(@
T 2 dr
g, = z {1_ [__ ri () } , 13
6 atj ) N by o B Vg 43)
¢
2
. r (T) dr R
I; = J‘Tl(r)rl(-c)exp[-——a(t_r) ](t—r)3/'-’ . (14)

0

The function ry {) in (8)-(14) is determined by the expression
¢

r ()= Ro—voa[ exp [—— RTI';”(T) ]dr. (15)

Computations were performed on an "Odra-1304" electronic computer for lead particles with an initial
radius of R = 7:107% cm. The plasma temperature was assumed to be 6000°K, and the coefficient o = 5 W/
cm?.deg.

Because (1) is meaningless for r < 0, a time interval was chosen for which the final radius remained
positive. The final result is obtained by the machine after nine iterations with a linear initial approximation
for the interval of t partitioned into 50 spaces and a relative accuracy of 2%.

The results are presented in Fig. 1 'and Table 1. As is seen from the figure, the nature of the time
change in the particle radius fthe function ry ¢)] is in good agreement with the results of the experimental paper

ml.

The contribution of the integrals I in (7) is represented in the table. As should have been expected, the
contribution of the integrals Ij, I, I,, which contain the quantity v as a factor, is small in the specific problem
considered, which is characterized by a low evaporation rate:

dr,

2~ 0.05 cm /sec € —;— ~ 80 cm/sec,
(1]

Moreover, the inequality

r @ a
Av -
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is always conserved in the problem considered; hence, the contribution of the integral I; can also be neglected.
Estimates made permit finding certain important asymptotics.

At the beginning of the process, i.e., for t « R%/a, although Ty < Ty the magnitude of the integrals I;
and I, can be neglected in comparison with the value of the integral I3, as is seen from (12) and (13). The ex-
ponential in the braces in this latter integral is much less than one; therefore, T;(¢) = V{a/7) - (an/)»)w/'tj
This result is evident from physical considerations since heating of a sphere with a practically fixed boundary
occurs at the beginning of the process.

As is seen from the table, the integral I; continues to introduce the greatest contribution to (7) in the
mode of the developed evaporation process, where its value is approximately constant in time. Solving the
equation dI;/dt = 0, we find

ri(t)=A—Bt, - (186)
where A and B are certain constants. The Sreznevskii law follows from (16):
das
df

7y di = const,
dt
which is verified in [L]. Finally, for low values of r; the role of the integral I, grows,

;. 7

T, (N~ ——
1) oV e

for ry < (A/a) - (T1/Tp).

In the specific problem under consideration, the inequality (17) starts to be satisfied from the value r; =
107% cm. As is seen from the figure, the temperature of the evaporation surface hence varies weakly, and it
can be extracted from under the integral sign inI;. Solving the equation dT,/dt = 0, we obtain

dryjdt — —C, dSjdi ~ —Cr,,

where C is some constant, i.e., for small values of the particle radius r, the rate of change of the surface
area diminishes with time in proportion to the radius. This deviation from the Sreznevskii law is also de-
tected in the experiments in [1].

NOTATION

Ry, initial particle radius; ry{), radius of the evaporating particle; T (r, t), temperature within the
particle; T; (), temperature of the evaporation surface; G, p, t, 7), Green's function; a, coefficient of
thermal diffusivity; A, coefficient of thermal conductivity; 7y, metal density; u, atomic weight; a, coeffi-
cient of heat exchange with the plasma; L, specific heat of evaporation; v, maximum evaporation rate;
q@), heat flux from the plasma.
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